Cost-based evaluation of classifiers

Lecture 21
by Marina Barsky

The Inadequacy of success rates

- As the class distribution becomes more skewed, evaluation based on success rate breaks down.
- Consider a dataset where the classes appear in a 999:1 ratio.
- A simple rule, which classifies every instance as the majority class, gives a 99.9% accuracy - no further improvement is needed!
- Evaluation by classification success rate assumes equal error costs---that a false positive error is equivalent to a false negative error.
- In the real world this is rarely the case, because classifications lead to actions which have consequences, sometimes grave.

Cost-based evaluation

- In practice, different types of classification errors often incur different costs
- The rare class is often denoted as positive (HIV from test results)
- The confusion matrix:

Terninology

- The confusion matrix:

True positives (TP) - the number of positive examples correctly predicted as positives False negatives (FN) - the number of positive examples wrongly predicted as negatives False positives (FP) - the number of negative examples wrongly predicted as positives True negatives (TN) - the number of negative examples correctly predicted as negatives

Terminology. Fractions

- Suppose you know what are all positive instances in your dataset (red dots)
- The classifier outputs as positives the instances inside the red oval

True Positive Fraction of All Positives

- True positive rate (fraction):

TPF=TP/all positives

- In the example: 4 red dots predicted as positives out of 10 red dots \rightarrow TPF=0.4
- Also called: sensitivity or recall

High sensitivity or high recall mean that classifier found most of the relevant positive instances

Examples:
High-sensitive HIV test- if the person is sick, it will be diagnosed with high-probability:
sick $\underset{\substack{\text { high } \\ \text { probability }}}{\text { positive test }}$
High-recall document query: the query brought most of the relevant documents

True Positive Fraction of All Classified as Positives

- Precision (fraction): precision=TP/(TP+FP)
- In the example: 4 red dots out of 7 total dots which are identified as positive
Precision=4/7
- High precision means that classifier returned more relevant results than irrelevant

Example:
Highly precise HIV test whoever is classified as HIV-positive is most probably sick: positive test \rightarrow HIV

Terminology. False Positive Fractions

- False Positive Rate(fraction):

FPF=FP/(all negatives)

- In the example: 3 black dots predicted as positives out of 10 total negative dots
FPF=3/10
- High FPF means that classifier often classifies negative as positive

Example: mammography

If the person is
diagnosed, it is not very likely that the person is really sick:
positive test $\underset{\substack{\text { low } \\ \text { probability }}}{\rightarrow}$ sick

True Negative Fraction of All Negatives

- Specificity (fraction): specificity=TN/(all negatives)
- In the example: 7 black dots which are left outside of the positive prediction out of total 10 negative instances
Specificity=7/10
- High specificity means that if classifier identifies something as negative, it is a high probability that it is indeed negative
Specificity + FPF=1.00

Highly-specific test means that it has a very low probability to be classified as positive, if the person is indeed negative: negative \rightarrow positive test

Incorporating the cost: Example

 Cost matrix| | | Predicted class | |
| :--- | :--- | ---: | ---: |
| | | | |
| Class + | Class - | | |\quad| For example, HIV |
| :--- |
| diagnostic test |

- A cost matrix encodes the penalty of classifying records of one class as another
- A negative value represents an award for making a correct classification

Counting the cost. Example

		Predicted class	
	Class +	Class -	
Actual	Class +	-1	100
class	Class -	1	0

Cost matrix

		Predicted class	
	Class +		Class -

		Predicted class	
	Class +	Class -	
Actual	Class +	250	45
class	Class -	5	200

Confusion matrix for Classifier A Confusion m
The total cost of model $A=150 *(-1)+60 * 1+40 * 100=3910$
The total cost of model B=250* $(-1)+5 * 1+45 * 100=4255$

If not take cost into account:

 B is better than A| | | Predicted class | |
| :--- | :--- | :--- | :---: |
| | Class + | Class - | |
| Actual
 class | Class + | -1 | |
| | Class - | 100 | |

Cost matrix

		Predicted class				Predicted class	
		Class +	Class -			Class +	Class -
Actual	Class +	150	40	Actual	Class +	250	45
class	Class -	60	250	class	Class -	5	200

Classifier A Classifier B
The total cost of model $A=150 *(-1)+60 * 1+40 * 100=3910$
The total cost of model B=250*(-1)+5*1+45*100=4255

Cost matrix example 1

- HIV diagnostic test

Cost matrix example 2

- Promotional mailing

Cost matrix example 3

- Loan decisions

Cost-based classification

- Let $\{p, n\}$ be the positive and negative instance classes.
- Let $\{\mathbf{Y}, \mathbf{N}\}$ be the classifications produced by a classifier.
- Let $c(\mathbf{Y}, \mathbf{n})$ be the cost of a false positive error.
- Let $c(\mathbf{N}, \mathbf{p})$ be the cost of a false negative error.
- For an instance E,
- the classifier computes $p(\mathbf{p})$ and $p(\mathbf{n})=1-p(\mathbf{p})$
- the decision to emit a positive classification should be:

$$
[1-p(\mathbf{p})]^{*} c(\mathbf{Y}, \mathbf{n})<p(\mathbf{p}) * c(\mathbf{N}, \mathbf{p})
$$

Cost-based classification: example

		Predicted class	
	Class +	Class -	
Actual class	Class +	-100	10000
	Class -	10	0

Positive if:

$$
[1-p(\mathbf{p})]^{*} c(\mathbf{Y}, \mathbf{n})<p(\mathbf{p})^{*} c(\mathbf{N}, \mathbf{p})
$$

The probabilistic classifier returned the probability that you have HIV:
$\mathrm{p}(\mathrm{HIV})=0.90$
$p($ not HIV $)=0.10$
$[1-p(p)] * c(Y, n)=0.10 * 10=1$
$p(p) * c(N, p)=0.90 * 10000=9000$
Classify as positive: $1 \lll 9000$

Cost-based classification: example

		Predicted class	
	Class +	Class -	
Actual class	Class +	-100	10000
	Class -	10	0

Positive if:
$[1-p(\mathbf{p})]^{*} c(\mathbf{Y}, \mathbf{n})<p(\mathbf{p})^{*} c(\mathbf{N}, \mathbf{p})$
$p(H I V)=0.3$
$p($ not HIV $)=0.7$
$[1-p(p)]^{*} c(Y, n)=0.7 * 10=7$
$p(p) * c(N, p)=0.3 * 10000=3000$
Classify as positive: $7 \lll 3000$ (still classify as positive, because it is better to be false positive than false negative in this case)

