Cost-based evaluation of classifiers

Lecture 21

by Marina Barsky

The Inadequacy of success rates

- As the class distribution becomes more skewed, evaluation based on success rate breaks down.
 - Consider a dataset where the classes appear in a 999:1 ratio.
 - A simple rule, which classifies every instance as the majority class, gives a 99.9% accuracy – no further improvement is needed!
- Evaluation by classification success rate assumes equal error costs—
 that a false positive error is equivalent to a false negative error.
 - In the real world this is rarely the case, because classifications lead to actions which have consequences, sometimes grave.

Cost-based evaluation

- In practice, different types of classification errors often incur different costs
- The rare class is often denoted as positive (HIV from test results)
- The confusion matrix:

		Predict	Predicted class		
		Yes	No		
A atual alaga	Yes	True positive	False negative		
Actual class No		False positive	True negative		

Terminology

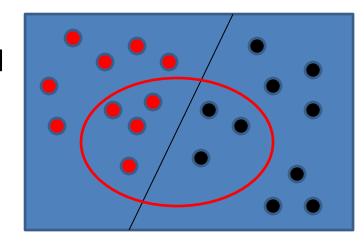
• The confusion matrix:

		Predicted class		
		Yes	No	
A atual alaga	Yes	True positive	False negative	
Actual class	No	False positive	True negative	

True positives (TP) – the number of positive examples correctly predicted as positives False negatives (FN) – the number of positive examples wrongly predicted as negatives False positives (FP) – the number of negative examples wrongly predicted as positives True negatives (TN) – the number of negative examples correctly predicted as negatives

Terminology. Fractions

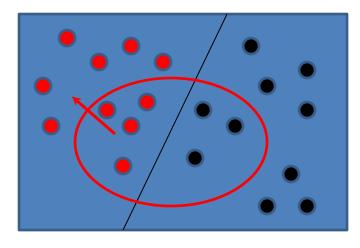
- Suppose you know what are all positive instances in your dataset (red dots)
- The classifier outputs as positives the instances inside the red oval



True Positive Fraction of All Positives

- True positive rate (fraction):
 TPF=TP/all positives
- In the example: 4 red dots predicted as positives out of 10 red dots → TPF=0.4
- Also called: sensitivity or recall

High sensitivity or high recall mean that classifier found most of the relevant positive instances



Examples:

High-sensitive HIV test- if the person is sick, it will be diagnosed with high-probability:

 $sick \rightarrow positive test$ probability

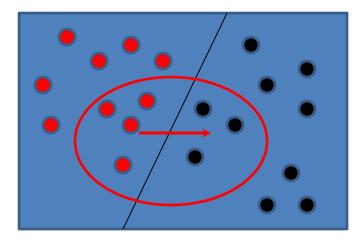
High-recall document query: the query brought most of the relevant documents

True Positive Fraction of All *Classified as Positives*

- Precision (fraction):
 precision=TP/(TP+FP)
- In the example: 4 red dots out of 7 total dots which are identified as positive

Precision=4/7

 High precision means that classifier returned more relevant results than irrelevant



Example:

Highly precise HIV test – whoever is classified as HIV-positive is most probably sick:
positive test → HIV

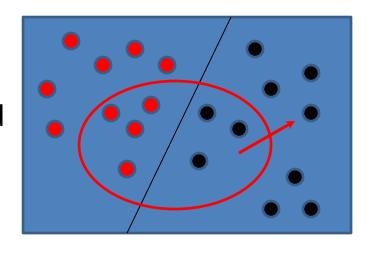
high probability

Terminology. False Positive Fractions

- False Positive Rate(fraction):
 FPF=FP/(all negatives)
- In the example: 3 black dots predicted as positives out of 10 total negative dots

FPF=3/10

 High FPF means that classifier often classifies negative as positive



Example: mammography

If the person is diagnosed, it is not very likely that the person is really sick:

positive test \rightarrow sick

probability

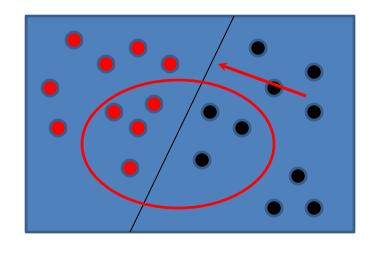
True Negative Fraction of All Negatives

- Specificity (fraction): specificity=TN/(all negatives)
- In the example: 7 black dots which are left outside of the positive prediction out of total 10 negative instances

Specificity=7/10

 High specificity means that if classifier identifies something as negative, it is a high probability that it is indeed negative

Specificity + FPF=1.00



Highly-specific test means that it has a very low probability to be classified as positive, if the person is indeed negative: negative → positive test

probability

Incorporating the cost: Example

Cost matrix

		Predicte	d class
	Cla		Class -
Actual	Class +	-1	100
class	Class -	1	0

For example, HIV diagnostic test

- A cost matrix encodes the penalty of classifying records of one class as another
- A negative value represents an award for making a correct classification

Counting the cost. Example

		Predicted class		
		Class +	Class -	
Actual	Class +	-1	100	
class	Class -	1	0	

Cost matrix

Predicted class				Predicte	d class		
		Class +	Class -			Class +	Class -
Actual	Class +	150	40	Actual	Class +	250	45
class	Class -	60	250	class	Class -	5	200

Confusion matrix for Classifier A Confusion matrix for Classifier B

The total cost of model A=150*(-1)+60*1+40*100=3910The total cost of model B=250*(-1)+5*1+45*100=4255

If not take cost into account: B is better than A

		Predicte	ed class
		Class +	Class -
Actual	Class +	-1	100
class	Class -	1	0

Cost matrix

F		Predicted class				Predicte	d class
		Class +	Class -			Class +	Class -
Actual	Class +	150	40	Actual	Class +	250	45
class	Class -	60	250	class	Class -	5	200

Classifier A

Classifier B

The total cost of model A=150*(-1)+60*1+40*100=3910The total cost of model B=250*(-1)+5*1+45*100=4255

Cost matrix example 1

HIV diagnostic test

		Predicte	d class
		Class + Class	
Actual	Class +	-100	10000
class	Class -	, 10	0

Person dies untreated and infects others

Cost of additional testing plus some discomfort

Cost matrix example 2

Promotional mailing

		Predicted class			
		Class +	Class -		
Actual	Class +	-1000	1000	 Loses potential revenue 	
class	Class -	, 1	0		
Cost of mailing					

Cost matrix example 3

Loan decisions

		Predicted class		
		Class +	Class -	
Actual	Class +	-100	10	 Loses potential revenue
class	Class -	₁ 50	0	
		/ bankruptc	У	

Cost-based classification

- Let {p,n} be the positive and negative instance classes.
- Let {Y,N} be the classifications produced by a classifier.
- Let c(Y,n) be the cost of a false positive error.
- Let c(N,p) be the cost of a false negative error.
- For an instance E,
 - the classifier computes $p(\mathbf{p})$ and $p(\mathbf{n})=1-p(\mathbf{p})$
 - the decision to emit a positive classification should be:

$$[1-p(p)]*c(Y,n) < p(p) * c(N,p)$$

Cost-based classification: example

		Predicted class	
			Class -
Actual	Class +	-100	10000
class	Class -	10	0

Positive if: $[1-p(\mathbf{p})]^*c(\mathbf{Y},\mathbf{n}) < p(\mathbf{p})^*c(\mathbf{N},\mathbf{p})$

The probabilistic classifier returned the probability that you have HIV:

p(HIV) = 0.90 p(not HIV) = 0.10 [1-p(p)]*c(Y,n) = 0.10 * 10 = 1 p(p) * c(N,p) = 0.90 * 10000 = 9000Classify as positive: 1<<<9000

Cost-based classification: example

		Predicted class		
			Class -	
Actual	Class +	-100	10000	
class	Class -	10	0	

Positive if: $[1-p(\mathbf{p})]^*c(\mathbf{Y},\mathbf{n}) < p(\mathbf{p})^*c(\mathbf{N},\mathbf{p})$

p(HIV) = 0.3 p(not HIV) = 0.7 [1-p(p)]*c(Y,n) = 0.7 * 10 = 7p(p) * c(N,p) = 0.3 * 10000 = 3000

Classify as positive: 7<<<3000 (still classify as positive, because it is better to be false positive than false negative in this case)